Machine Learning Icon

Machine Learning

Machine Learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.
174 Stories
All Topics

Practical AI Practical AI #142

Building a data team

Inspired by a recent article from Erik Bernhardsson titled “Building a data team at a mid-stage startup: a short story”, Chris and Daniel discuss all things AI/data team building. They share some stories from their experiences kick starting AI efforts at various organizations and weight the pro and cons of things like centralized data management, prototype development, and a focus on engineering skills.

Chip Huyen huyenchip.com

A free book on how to survive the machine learning interview process

Chip Huyen has been on both sides of ML-related interviews and has a lot of expertise on the process:

If you’ve picked up this book because you’re interested in working with one of the key emerging technologies of the 2020s but not sure where to start, you’re in the right place. Whether you want to become an ML engineer, a platform engineer, a research scientist, or you want to do ML but don’t yet know the differences among those titles, I hope that this book will give you some useful pointers.

Practical AI Practical AI #139

Vector databases for machine learning

Pinecone is the first vector database for machine learning. Edo Liberty explains to Chris how vector similarity search works, and its advantages over traditional database approaches for machine learning. It enables one to search through billions of vector embeddings for similar matches, in milliseconds, and Pinecone is a managed service that puts this capability at the fingertips of machine learning practitioners.

Facebook Engineering Icon Facebook Engineering

A data augmentations library for audio, image, text, and video

AugLy is a great library to utilize for augmenting your data in model training, or to evaluate the robustness gaps of your model! We designed AugLy to include many specific data augmentations that users perform in real life on internet platforms like Facebook’s – for example making an image into a meme, overlaying text/emojis on images/videos, reposting a screenshot from social media. While AugLy contains more generic data augmentations as well, it will be particularly useful to you if you’re working on a problem like copy detection, hate speech detection, or copyright infringement where these “internet user” types of data augmentations are prelevant.

A data augmentations library for audio, image, text, and video

Practical AI Practical AI #138

Multi-GPU training is hard (without PyTorch Lightning)

William Falcon wants AI practitioners to spend more time on model development, and less time on engineering. PyTorch Lightning is a lightweight PyTorch wrapper for high-performance AI research that lets you train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code! In this episode, we dig deep into Lightning, how it works, and what it is enabling. William also discusses the Grid AI platform (built on top of PyTorch Lightning). This platform lets you seamlessly train 100s of Machine Learning models on the cloud from your laptop.

Practical AI Practical AI #137

Learning to learn deep learning 📖

Chris and Daniel sit down to chat about some exciting new AI developments including wav2vec-u (an unsupervised speech recognition model) and meta-learning (a new book about “How To Learn Deep Learning And Thrive In The Digital World”). Along the way they discuss engineering skills for AI developers and strategies for launching AI initiatives in established companies.

Command line interface github.com

Command-line tools for speech and intent recognition on Linux

This isn’t merely a speech-to-text thing. It also provides intent recognition, which makes it great for doing voice commands. For example, when trained with this template, the following command:

$ voice2json transcribe-wav \
      < turn-on-the-light.wav | \
      voice2json recognize-intent | \
      jq .

Produces this JSON event:

{
    "text": "turn on the light",
    "intent": {
        "name": "LightState"
    },
    "slots": {
        "state": "on"
    }
}

And it can be retrained quickly enough to do it at runtime. Cool stuff!

Practical AI Practical AI #135

Elixir meets machine learning

Today we’re sharing a special crossover episode from The Changelog podcast here on Practical AI. Recently, Daniel Whitenack joined Jerod Santo to talk with José Valim, Elixir creator, about Numerical Elixir. This is José’s newest project that’s bringing Elixir into the world of machine learning. They discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook that’s built on Phoenix LiveView.

Practical AI Practical AI #133

25 years of speech technology innovation

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

The Changelog The Changelog #439

Elixir meets machine learning

This week Elixir creator José Valim joins Jerod and Practical AI’s Daniel Whitenack to discuss Numerical Elixir, his new project that’s bringing Elixir into the world of machine learning. We discuss why José chose this as his next direction, the team’s layered approach, influences and collaborators on this effort, and their awesome collaborative notebook project that’s built on Phoenix LiveView.

Practical AI Practical AI #132

Generating "hunches" using smart home data 🏠

Smart home data is complicated. There are all kinds of devices, and they are in many different combinations, geographies, configurations, etc. This complicated data situation is further exacerbated during a pandemic when time series data seems to be filled with anomalies. Evan Welbourne joins us to discuss how Amazon is synthesizing this disparate data into functionality for the next generation of smart homes. He discusses the challenges of working with smart home technology, and he describes how they developed their latest feature called “hunches.”

AI (Artificial Intelligence) exxactcorp.com

Disentangling AI, machine learning, and deep learning

This article starts with a concise description of the relationship and differences of these 3 commonly used industry terms. Then it digs into the history.

Deep learning is a subset of machine learning, which in turn is a subset of artificial intelligence, but the origins of these names arose from an interesting history. In addition, there are fascinating technical characteristics that can differentiate deep learning from other types of machine learning…essential working knowledge for anyone with ML, DL, or AI in their skillset.

Disentangling AI, machine learning, and deep learning

The New Stack Icon The New Stack

How I built an on-premises AI training testbed with Kubernetes and Kubeflow

This is part 4 in a cool series on The New Stack exploring the Kubeflow machine learning platform.

I recently built a four-node bare metal Kubernetes cluster comprising CPU and GPU hosts for all my AI experiments. Though it makes economic sense to leverage the public cloud for provisioning the infrastructure, I invested a fortune in the AI testbed that’s within my line of sight.

The author shares many insights into the choices he made while building this dream setup.

How I built an on-premises AI training testbed with Kubernetes and Kubeflow

Practical AI Practical AI #127

Women in Data Science (WiDS)

Chris has the privilege of talking with Stanford Professor Margot Gerritsen, who co-leads the Women in Data Science (WiDS) Worldwide Initiative. This is a conversation that everyone should listen to. Professor Gerritsen’s profound insights into how we can all help the women in our lives succeed - in data science and in life - is a ‘must listen’ episode for everyone, regardless of gender.

0:00 / 0:00