Natural Language Processing Icon

Natural Language Processing

Natural language processing (NLP) is the study of how computers and humans interact.
28 Stories
All Topics

Practical AI Practical AI #133

25 years of speech technology innovation

To say that Jeff Adams is a trailblazer when it comes to speech technology is an understatement. Along with many other notable accomplishments, his team at Amazon developed the Echo, Dash, and Fire TV changing our perception of how we could interact with devices in our home. Jeff now leads Cobalt Speech and Language, and he was kind enough to join us for a discussion about human computer interaction, multimodal AI tasks, the history of language modeling, and AI for social good.

Tooling github.com

Search inside YouTube videos using natural language

Use OpenAI’s CLIP neural network to search inside YouTube videos. You can try it by running the notebook on Google Colab.

The README has a bunch of examples of things you might search for and the results you’d get back. (“The Transamerica Pyramid”, anyone?)

The author also has another related project where you can search Unsplash in like manner.

Ines Montani github.com

Introducing spaCy 3.0

You may recall spaCy from this episode of Practical AI with its creators. If not, now’s a great time to introduce yourself to the project. 3.0 looks like a fantastic new release of the wildly popular NLP library. The list of new and improved things is too long for me to reproduce here, so go check it out for yourself.

There’s also three YouTube videos accompanying the release. That’s evidence of just how much effort and polish went in to this.

Practical AI Practical AI #115

From research to product at Azure AI

Bharat Sandhu, Director of Azure AI and Mixed Reality at Microsoft, joins Chris and Daniel to talk about how Microsoft is making AI accessible and productive for users, and how AI solutions can address real world challenges that customers face. He also shares Microsoft’s research-to-product process, along with the advances they have made in computer vision, image captioning, and how researchers were able to make AI that can describe images as well as people do.

Practical AI Practical AI #104

Speech tech and Common Voice at Mozilla

Many people are excited about creating usable speech technology. However, most of the audio data used by large companies isn’t available to the majority of people, and that data is often biased in terms of language, accent, and gender. Jenny, Josh, and Remy from Mozilla join us to discuss how Mozilla is building an open-source voice database that anyone can use to make innovative apps for devices and the web (Common Voice). They also discuss efforts through Mozilla fellowship program to develop speech tech for African languages and understand bias in data sets.

Practical AI Practical AI #102

Hidden Door and so much more

Hilary Mason is building a new way for kids and families to create stories with AI. It’s called Hidden Door, and in her first interview since founding it, Hilary reveals to Chris and Daniel what the experience will be like for kids. It’s the first Practical AI episode in which some of the questions came from Chris’s 8yo daughter Athena.

Hilary also shares her insights into various topics, like how to build data science communities during the COVID-19 Pandemic, reasons why data science goes wrong, and how to build great data-based products. Don’t miss this episode packed with hard-won wisdom!

Practical AI Practical AI #98

🤗 All things transformers with Hugging Face

Sash Rush, of Cornell Tech and Hugging Face, catches us up on all the things happening with Hugging Face and transformers. Last time we had Clem from Hugging Face on the show (episode 35), their transformers library wasn’t even a thing yet. Oh how things have changed! This time Sasha tells us all about Hugging Face’s open source NLP work, gives us an intro to the key components of transformers, and shares his perspective on the future of AI research conferences.

Practical AI Practical AI #84

COVID-19 Q&A and CORD-19

So many AI developers are coming up with creative, useful COVID-19 applications during this time of crisis. Among those are Timo from Deepset-AI and Tony from Intel. They are working on a question answering system for pandemic-related questions called COVID-QA. In this episode, they describe the system, related annotation of the CORD-19 data set, and ways that you can contribute!

Practical AI Practical AI #82

Speech recognition to say it just right

Catherine Breslin of Cobalt joins Daniel and Chris to do a deep dive on speech recognition. She also discusses how the technology is integrated into virtual assistants (like Alexa) and is used in other non-assistant contexts (like transcription and captioning). Along the way, she teaches us how to assemble a lexicon, acoustic model, and language model to bring speech recognition to life.

Practical AI Practical AI #78

NLP for the world's 7000+ languages

Expanding AI technology to the local languages of emerging markets presents huge challenges. Good data is scarce or non-existent. Users often have bandwidth or connectivity issues. Existing platforms target only a small number of high-resource languages.

Our own Daniel Whitenack (data scientist at SIL International) and Dan Jeffries (from Pachyderm) discuss how these and related problems will only be solved when AI technology and resources from industry are combined with linguistic expertise from those on the ground working with local language communities. They have illustrated this approach as they work on pushing voice technology into emerging markets.

TechCrunch Icon TechCrunch

Hugging Face raises $15 million to build their open source NLP library 🤗

Congrats to Clément and the Hugging Face team on this milestone!

The company first built a mobile app that let you chat with an artificial BFF, a sort of chatbot for bored teenagers. More recently, the startup released an open-source library for natural language processing applications. And that library has been massively successful.

The library mentioned is called Transformers, which is dubbed as ‘state-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch.’

If any of these things ring a bell to you, it may be because Practical AI co-host Daniel Whitenack has been a huge supporter of Hugging Face for a long time and mentions them often on the show. We even had Clément on the show back in March of this year.

Practical AI Practical AI #68

Modern NLP with spaCy

SpaCy is awesome for NLP! It’s easy to use, has widespread adoption, is open source, and integrates the latest language models. Ines Montani and Matthew Honnibal (core developers of spaCy and co-founders of Explosion) join us to discuss the history of the project, its capabilities, and the latest trends in NLP. We also dig into the practicalities of taking NLP workflows to production. You don’t want to miss this episode!

Practices github.com

Natural Language Processing best practices & examples

The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in NLP algorithms, neural architectures, and distributed machine learning systems. The content is based on our past and potential future engagements with customers as well as collaboration with partners, researchers, and the open source community.

Google github.com

Using Google's speech recognition to beat Google's ReCaptcha

A little ingenuity paired with changes to ReCaptcha’s audio challenge allowed this hacker to create a Python ‘robot’ that defeats the ‘not a robot’ test with 90% accuracy. The approach is brilliant:

  1. Navigate to Google’s ReCaptcha Demo site
  2. Navigate to audio challenge for ReCaptcha
  3. Download audio challenge
  4. Submit audio challenge to Speech To Text
  5. Parse response and type answer
  6. Press submit and check if successful

The code is small enough to grok in 5-10 minutes. Love it!

Using Google's speech recognition to beat Google's ReCaptcha
0:00 / 0:00